

Mechanical & Industrial Engineering UNIVERSITY OF TORONTO

Background

As the use of wearable sensors in a more personalized healthcare system increases, the need for a reliable, reusable, and clean adhesive mechanism to skin is critical.

Skin adhesive patches enable^[1,2]: Monitoring vital signs (EEG, ECG, EMG) Body motion & vibration sensing Controlled drug delivery

Current state of the art in bioinspired dry adhesive for skin vary from mushroom-shaped pillars to octopus-inspired suction cups. The highest reported normal adhesion to skin is $\sim 2 \text{ N/cm}^2$.

Mushroom-shaped pillar array by Kwak et al. in 2011^[3]

Adhesion: 1.3 N/cm²

Approach

To improve upon dry microstructured adhesion to skin, the mechanisms of adhesion are first understood on commonly studied surfaces (i.e. glass) and then skin-replica surfaces.

The dry microstructured surfaces show a significant drop-off in adhesion when moving from a hard, smooth glass surface to a soft, rough surface (skin replica).

In-Situ Characterization of Dry Microstructured **Surfaces for Human Skin Adhesion**

¹Department of Mechanical and Industrial Engineering, University of Toronto ²Department of Materials Science and Engineering, University of Toronto

Results

Suction cup array adhesive by Baik et al. in 2018^[4]

Adhesion: 1.8 N/cm²

Commercial mushroom-shaped pillar arrays (nanogriptech, tip diameter 150µm, AR ~2) were tested on glass surfaces and showed normal adhesion of up to 13 N/cm² with significant dependence on preload. Normal adhesion testing on samples of varying diameters revealed a size-scale effect: smaller samples had higher adhesion per unit area. In-situ characterization was also enabled through frustrated-TIR^[5].

adhesion = 4.5 N/cm^2 diameter = 3.5 mm

Conclusions & Next Steps

[1] S. Baik, J. Kim, H.J. Lee, T.H. Lee, C. Pang, Advanced Science 5 (2018) 1870045. [3] I. Hwang, H.N. Kim, M. Seong, S.-H. Lee, M. Kang, H. Yi, W.G. Bae, M.K. Kwak, H.E. Jeong, Advanced Healthcare Materials 7 (2018) 1800275. [4] M.K. Kwak, H.-E. Jeong, K.Y. Suh, Advanced Materials 23 (2011) 3949–3953. [5] V. Tinnemann, L. Hernández, S.C.L. Fischer, E. Arzt, R. Bennewitz, R. Hensel, Advanced Functional Materials 29 (2019) 1807713.

Aly Hassan¹, Benjamin Hatton², Tobin Filleter¹

Preliminary results show a random detachment mechanism in most cases, but this needs further statistical analysis. Contact appears to change under high preloads, however the nature of this drop in adhesion remains unclear. • A size-scale effect was observed where smaller samples achieved higher adhesion per unit area. • Future work will include understanding changes in the contact mechanism with size-scale effect and on skin replica samples.

in-situ characterization setup

[2] S. Baik, H.J. Lee, D.W. Kim, J.W. Kim, Y. Lee, C. Pang, Advanced Materials (2019) 1803309.